Cold Temperature Encoding by Cutaneous TRPA1 and TRPM8-Carrying Fibers in the Mouse
نویسندگان
چکیده
Previous research identified TRPM8 and TRPA1 cold transducers with separate functions, one being functional in the non-noxious range and the second one being a nociceptive transducer. TRPM8-deficient mice present overt deficits in the detection of environmental cool, but not a lack of cold avoidance and TRPA1-deficient mice show clear deficits in some cold nocifensive assays. The extent of TRPA1's contribution to cold sensing in vivo is still unclear, because mice lacking both TRPM8 and TRPA1 (DKO) were described with unchanged cold avoidance from TRPM8-/- based on a two-temperature-choice assay and by c-fos measurement. The present study was designed to differentiate how much TRPM8 alone and combined TRPA1 and TRPM8 contribute to cold sensing. We analyzed behavior in the thermal ring track assay adjusted between 30 and 5°C and found a large reduction in cold avoidance of the double knockout mice as compared to the TRPM8-deficient mice. We also revisited skin-nerve recordings from saphenous-nerve skin preparations with regard to nociceptors and thermoreceptors. We compared the frequency and characteristics of the cold responses of TRPM8-expressing and TRPM8-negative C-fiber nociceptors in C57BL/6J mice with nociceptors of TRPM8-deficient and DKO mice and found that TRPM8 enables nociceptors to encode cold temperatures with higher firing rates and larger responses with sustained, static component. In TRPM8-/-, C-fiber cold nociceptors were markedly reduced and appeared further reduced in DKO. Nevertheless, the remaining cold responses in both knockout strains were similar in their characteristics and they were indifferent from the TRPM8-negative cold responses found in C57BL/6J mice. TRPM8 had a comparably essential role for encoding cold in thermoreceptors and lack of TRPM8 reduced response magnitude, peak and mean firing rates and the incidence of thermoreceptors. The encoding deficits were similar in the DKO strain. Our data illustrate that lack of TRPA1 in TRPM8-deficient mice results in a disproportionately large reduction in cold avoidance behavior and also affects the incidence of cold encoding fiber types. Presumably TRPA1 compensates for lack of TRPM8 to a certain extent and both channels cooperate to cover the entire cold temperature range, making cold-temperature encoding by TRPA1-although less powerful-synergistic to TRPM8.
منابع مشابه
How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation
Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or n...
متن کاملTransient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors
The role of transient receptor potential channel A1 (TRPA1) in noxious cold sensation remains unclear. Some data support the hypothesis that TRPA1 is a transducer of noxious cold whilst other data contest it. In this study we investigated the role of TRPA1 in cold detection in cutaneous nociceptors in vivo using complementary experimental approaches. We used noxious withdrawal reflex electromyo...
متن کاملTRPM8 Is Required for Cold Sensation in Mice
ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temper...
متن کاملThe roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity
BACKGROUND The cooling agents menthol and icilin act as agonists at TRPM8 and TRPA1. In vitro, activation of TRPM8 by icilin and cold, but not menthol, is dependent on the activity of a sub-type of phospholipase A2, iPLA2. Lysophospholipids (e.g. LPC) produced by PLA2 activity can also activate TRPM8. The role of TRPA1 as a primary cold sensor in vitro is controversial, although there is eviden...
متن کاملThermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain
Abnormal Ca2+ channel physiology, expression levels, and hypersensitivity to heat have been implicated in several pain states following treatment with chemotherapeutic agents. As members of the Ca2+ permeable transient receptor potential (TRP), five of the channels (TRPV1-4 and TRPM2) are activated by different heat temperatures, and two of the channels (TRPA1 and TRPM8) are activated by cold t...
متن کامل